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Abstract Most approaches towards a quantum theory of gravitation indicate the existence of a minimal length scale of the order of
the Planck length. Quantum mechanical models incorporating such an intrinsic length scale call for a deformation of Heisenberg’s
algebra resulting in a generalised uncertainty principle and constitute what is called gravitational quantum mechanics. Utilising
the position representation of this deformed algebra, we study various models of gravitational quantum mechanics. The free time
evolution of a Gaussian wave packet is investigated as well as the spectral properties of a particle bound by an external attractive
potential. Here the cases of a box with infinite walls and an attractive potential well of finite depth are considered.

1 Introduction

In the early twentieth century, physics has seen the advent of two fundamental theories, the general relativity being the contemporary
theory describing the gravitational force, and the quantum theory being the basis for the description of the electro-weak and strong
interactions. Quantum gravity is the attempt to unify both theories into a more fundamental one. Despite the many attempts for such
a unification no consistent quantum gravity theory could be formalised for the time being. In fact, to the best of our knowledge,
the first attempt was made by Bronstein in 1936 [1]. Bronstein already concluded that there must be a minimal length in such a
theory. Some 10 years later, in 1947, Snyder [2] arrived at the same conclusion by assuming that space-time is not a continuum but
discrete. Lorentz invariance then led him to the conclusion that the usual Heisenberg commutation relation of position operator X̂
and momentum operator P̂ calls for a deformation of the form[

X̂ , P̂
]

� i
(

1 + β P̂2
)

. (1)

Here and throughout this paper, we will use units where � � 1. In the above β > 0 represents the deformation parameter which, in
our units, has the dimension of an area. Hence, for simplifying notation we will also use the alternative parameter λ � √

β which has
the dimension of a length. As quantum gravity effects are believed to become visible at the Planck scale this length should be of the
order of the Planck length, λ ∼ 10−35 m. For a detailed discussion on this parameter, we refer to ref. [3]. Quantum mechanics based
on above deformed Heisenberg algebra is called gravitational quantum mechanics. The deformed algebra implies the uncertainty
relation

�X�P ≥ 1

2

∣∣∣〈[X̂ , P̂]〉
∣∣∣ � 1

2

[
1 + λ2〈P̂2〉

]
, (2)

which, see for example [4], results in the lower bound

�X ≥ 1

2

[
1

�P
+ λ2�P

]
. (3)

The minimal length is given by min �X � λ where �P � 1/λ. Thus, to incorporate the concept of a minimum measurable length
into quantum mechanics, one should deform the standard Heisenberg algebra in the form (1). The resulting uncertainty relation (2)
is called generalised uncertainty principle (GUP).
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Since the middle of the last century an enormous amount of work has been invested in this topic resulting in a vast number of papers
addressing the effects of GUP on quantum mechanical systems [5–8]. There had been investigations in the high-energy regime, but
also studies of black holes and their thermodynamic properties. As example we refer to ref. [9] where the authors analysed a precise
GUP formulation that can be played by the geometry of the momentum space in determining the presence of a minimal length in the
theory. Thermodynamic properties of black holes computed via the GUP were also studied in [10]. The n-dimensional extension of
the Kempf et al. model [11], which leads to the appearance of non-commutativity in the configurational variables, is investigated in
ref. [13]. A comparison between the original GUP and polymer quantum mechanics in isotropic cosmology is performed in [14] and
in [15] the authors studied different versions of the GUP, in regard to the presence of a minimal length and to their implementation
to the anisotropic Bianchi I cosmological model. Ref. [16], by using an alternative GUP linked to polymer quantum mechanics,
obtained a non-singular emergent universe with an asymptotic Einstein-static beginning, and then study corrections to the primordial
power spectrum of scalar perturbations during a cosmological-constant-dominated phase. By using this formalism, in ref. [17], the
gravitational collapse of a spherical dust cloud is studied and finds super-Schwarzschild asymptotic configurations that are also
stable to small perturbations. For further previous work, we limit ourselves to refer to some more recent extensive reviews [18, 19]
which provide huge lists of original references to the subject.

The purpose of this paper is to investigate the GUP algebra, that is the deformed Heisenberg algebra (1) with its generalised
uncertainty principle (2), in an algebraical way. In doing so, we will work within a coordinate representation, where the momentum
operator is represented by the so-called GUP derivative. Using the specific properties of this derivative, we are able to study various
problems in gravitational quantum mechanics in an explicit way.

We start with reviewing some of the known representations of the GUP algebra in Sect. 2. Section 3 then introduces the afore-
mentioned GUP derivative. We discuss some of its properties and in particular the GUP exponential function being an eigenfunction
of this derivative. Continuity conditions for the GUP derivative of wave functions are found in cases where the potential has a finite
discontinuity are also suggested. These properties are then utilised in the following sections. In Sect. 4, we study the free gravitational
quantum dynamics of a Gaussian wave packet. Hereby we obtained the GUP Fourier transformation as an approximation of the
standard Fourier transformation adapted to the needs of gravitational quantum mechanics, which in turn allows us to discuss in Sect.
5 the time evolution of the initial Gaussian wave package. In Sect. 6, we will look at the eigenvalue problem of the GUP Hamiltonian
for the particle in a box with infinite walls and a potential well of finite depth. Some final remarks are provided in Sect. 7.

2 Representations of the GUP algebra

The GUP algebra (1) exhibits various representations, some of which we will discuss below.

GUP momentum representation: The most natural representation is the one where the operator P̂ is represented by a real number
P ∈ R. Consequently, X̂ is then represented by a differential operator. That is, we have

X̂ � i
(
1 + βP2) ∂

∂P
, P̂ � P , (4)

which may easily be verified to obey the GUP algebra (1). This representation was first discussed in full detail by Kempf et al. [11].
They have shown that the corresponding Hilbert space HP � L2(R, dμ(P)) is equipped with a scalar product of the form

〈�|�̃〉 �
∫ ∞

−∞
dμ(P) �∗(P)�̃(P) �

∫ ∞

−∞
dP

1 + βP2 �∗(P)�̃(P) . (5)

Here the states are represented by wave functions �(P) � 〈P|�〉 and �̃(P) � 〈P|�̃〉. The expectation values of an observable Â
in such state �(P) are given by

〈 Â〉� � 〈�| Â|�〉 �
∫ ∞

−∞
dP

1 + βP2 �∗(P)( Â�)(P) . (6)

Let us also note that both P̂ and X̂ are symmetric operators onHP as was explicitly shown in [11]. The corresponding non-relativistic
GUP Hamiltonian of a particle with mass M > 0 in the presence of a real-valued scalar potential V reads

HP :� P2

2M
+ V

(
i
(
1 + βP2) ∂

∂P

)
. (7)

For an explicit discussion of the eigenvalue problem of HP for the harmonic oscillator problem, we refer the work by Kempf
et al. [11]. The harmonic oscillator and the Coulomb problem were also studied by Brown [12]. In going forward, we will call the
representation (4) the GUP momentum representation.

Canonical momentum representation: Let us consider the standard canonical momentum representation where the momentum
operator p̂ is represented by a real number p and the position operator x̂ by the derivative i∂p . Obviously, we have

x̂ � i∂p , p̂ � p , [x̂ , p̂] � i , (8)
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the standard canonical commutation relation. In terms of this canonical representation, the GUP algebra is realised by the relations

X̂ � i∂p , P̂ � 1

λ
tan(λp) , (9)

as can easily be verified. We will call this the canonical momentum representation of the GUP algebra. Whereas the GUP position
operator X̂ and the canonical position operator x̂ exhibit the same realisation, the corresponding momentum operators are significantly
different as λP � tan(λp). That is, p cannot take arbitrary real values but is restricted to the interval −p0 < p < p0, where p0 :� π

2λ

represents a cutoff of the canonical momentum. The inverse map is given by the arctan function defined as the principle branch of
the inverse of the tangent function, which we will denote by ϕ wherever suitable,

p � ϕ(P) :� 1

λ
arctan(λP) . (10)

Noting that ϕ′(P) � 1 + βP2 the scalar product (5) for two wave function φ(p) :� 〈p|φ〉 and φ̃(p) � 〈p|φ̃〉 changes to

〈φ|φ̃〉 �
∫ p0

−p0

dp φ∗(p)φ̃(p) . (11)

That is, in essence HP is changed to Hp :� L2([−p0, p0], dp). Expectation values of an observable Â in a state represented by a
wave function φ(p) are given by

〈 Â〉φ � 〈φ| Â|φ〉 �
∫ π

2λ

− π
2λ

dp φ∗(p)( Âφ)(p) (12)

and the corresponding GUP Hamiltonian reads in this canonical momentum representation

Hp :� 1

2Mλ2 tan2(λp) + V
(
i∂p

)
(13)

GUP position representation: Recalling the well-known relation [x̂ , f ( p̂)] � i f ′( p̂) valid for any reasonable function f , the position
representation of the GUP algebra is

X̂ � x̂ � x , P̂ � 1

λ
tan

(
λ p̂

) � 1

λ
tan(−iλ∂x ) � 1

iλ
tanh(λ∂x ) . (14)

When dealing with GUP quantum mechanics, one usually assumes that λ is sufficiently small. Hence, we may express the momentum
operator with the help of the Taylor series for the hyperbolic tangent, which reads

tanh z � z
∞∑
n�0

22n+2(22n+2 − 1)

(2n + 2)!
B2n z

2n , (15)

where Bn stands for the n-th Bernoulli number. Hence, to first order in β � λ2, the momentum operator is given by

P̂ � −i∂x + i
λ2

3
∂3
x + O(λ4) . (16)

In this representation the inner product for two states characterised by the wave functions ψ(x) � 〈x |ψ〉 and ψ̃(x) � 〈x |ψ̃〉 is the
standard product

〈ψ |ψ̃〉 �
∫ ∞

−∞
dx ψ∗(x)ψ̃(x) . (17)

That is, here we are back on the standard Hilbert space Hx � L2(R, dx), where expectation values of an observable are given in
the usual way

〈 Â〉ψ � 〈ψ | Â|ψ〉 �
∫ ∞

−∞
dx ψ∗(x)( Âψ)(x) (18)

However, the corresponding GUP Hamiltonian is not a standard Schrödinger Hamiltonian as it is of the form

Hx :� − 1

2Mλ2 tanh2(λ∂x ) + V (x) . (19)
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3 The GUP derivative and its properties

The objective of this section is to present some properties of the GUP derivative which we define by

Dx :� 1

λ
tanh(λ∂x ) � − i

λ
tan(iλ∂x ) � −iϕ−1(i∂x ) . (20)

Here we note that the above operator is to be understood in terms of the power series

Dx �
∞∑
n�0

22n+2(22n+2 − 1)

(2n + 2)!
B2n λ2n∂2n+1

x (21)

and thus is a linear operator. With this definition the GUP Hamiltonian (19) now takes the simple form

Hx � − 1

2M
D2
x + V (x) . (22)

It is obvious that on Hx this derivative is anti-symmetric, i.e. D†
x � −Dx . This implies that the corresponding momentum operator

is symmetric, cf. (14),

P̂ � −iDx � 1

iλ
tanh(λ∂x ) , P̂† � P̂ (23)

but it is not self-adjoint [21, 22]. In fact, as we will see below, the eigenfunctions of P̂ do not form a complete set in Hx .
At a later stage, we will also need to look at integrals of such derivatives, that is, integrals of the form

∫ b

a
dx (Dxg)(x) �

∞∑
n�0

22n+2(22n+2 − 1)

(2n + 2)!
B2n λ2n[g(2n)(b) − g(2n)(a)

]
. (24)

Here g(2n) denotes the 2n-th derivative of the function g. In particular, in the limit a → b the vanishing of above expression implies
the continuity of g (and all its even derivatives) at b.

As an application, let us consider the stationary Schödinger equation for a potential V (x) being bounded but not necessarily
continuous at say x � x0 and integrate it over an interval containing x0,

− 1

2M

∫ x0+ε

x0−ε

dx D2
xψ(x) �

∫ x0+ε

x0−ε

dx
[
E − V (x)

]
ψ(x) . (25)

In the limit ε → 0 the right-hand side vanishes and thus we arrive at a continuity condition for the even derivatives of the function
g � Dxψ . That is, the GUP derivative of the wave function at x � x0, where the potential is bounded but not necessary continuous,
should be continuous.

(Dxψ)(x0 − 0) � (Dxψ)(x0 + 0) . (26)

We will utilise this condition when solving the problem where the potential characterises a box of finite depth.
GUP exponential: Here we begin by defining the GUP exponential function as follows

eβ (a; x) :� exp{−iϕ(ia)x} , a ∈ C , (27)

with ϕ as previously defined in (10). Using the well-know relation f (∂x ) eiαx � f (iα)eiαx , one immediately finds the relation

Dxeβ (a; x) � aeβ (a; x) . (28)

That is, the GUP exponential (27) is an eigenfunction of the GUP derivative with eigenvalue given by its first parameter. One can
easily check the following relations for the GUP exponential;

eβ (a; 0) � 1 , eβ (0; x) � 1 , eβ (a; x)eβ (a; y) � eβ (a; x + y) . (29)

Hence, the GUP exponential obeys the usual functional relation of the standard exponential function in its second parameter.
As a first application of the GUP exponential, let us consider the GUP wave equation given by

(D2
x + ω2)y(x) � 0 , ω > 0 . (30)

Obviously, the two linearly independent solutions are the plane waves

eβ (iω; x) and eβ (iω; x) . (31)

The wavelength � of these waves is given by � � 2π
ϕ(ω) as eβ (iω; x + �) � eβ (iω; x). Here we note that due to the boundedness of the

deformation function ϕ(ω) < π
2λ

, the wave length is bounded from below by � > 4λ. This is an obvious consequence of minimal
length implied by GUP.
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Finally we conclude this discussion by introducing the GUP cosine and GUP sine functions following the usual definitions

Cβ (ω; x) :� 1

2

[
eβ (iω; x) + eβ (−iω; x)

] � cos(ϕ(ω)x), (32)

Sβ (ω; x) :� 1

2i

[
eβ (iω; x) − eβ (−iω; x)

] � sin(ϕ(ω)x), (33)

which both are also solution of the GUP wave Eq. (30).

4 Gaussian wave packets and GUP Fourier transformation

GUP momentum eigenfunctions: With the above exponential being an eigenfunction of the GUP derivative, it also serves as an
eigenfunction for the momentum operator P̂ � −iDx . That is, the GUP momentum eigenfunctions satisfying

P̂uP (x) � PuP (x) , P ∈ R , (34)

are explicitly given by plane waves with a dispersion relation characterise by the deformation function ϕ,

uP (x) � 1√
2π (1 + λ2P2)

eβ (i P; x) �
√

ϕ′(P)

2π
eiϕ(P)x . (35)

Here we remark that the wave length � � 2π
ϕ(P) represents the GUP-corrected De Broglie relation. Noting that ϕ′(P)δ(ϕ(P)−ϕ(P)) �

δ(P − P ′), one can easily check that they are properly normalised and othogonal
∫ ∞

−∞
dx u∗

P (x)uP ′ (x) � δ(P − P ′) . (36)

However, they do not form a complete set on Hx as
∫ ∞

−∞
dP u∗

P (x)uP (x ′) � 1

2π

∫ π
2λ

− π
2λ

dϕ e−iϕ(x−x ′) � sin
(

π
2λ

(x − x ′)
)

π(x − x ′)
(37)

and hence only in the limit λ → 0 an exact completeness relation is achieved. This implies that a decomposition of any function
into above momentum eigenfunctions cannot resolve details which are within a range of the width of above sin-function. That is,
details of order �x ∼ λ become invisible in a momentum decomposition. See the appendix for a calculation of an approximate
completeness relation up to first order in β � λ2.
Gaussian wave packet: Let us consider a normalised Gaussian wave function

φ0(x) � 1

(2πσ 2)1/4 e− x2

4σ2 (38)

with a vanishing mean value 〈x〉φ0 � 0 and variance

�x �
√

〈x2〉φ0 − 〈x〉2
φ0

� σ > 0 . (39)

Despite the fact that the momentum eigenfunctions are not complete, we may analyse their components contained in the Gaussian
wave function. The P-component is given by

g0(P) :�
∫ ∞

−∞
dx φ0(x)u∗

P (x) �
∫ ∞

−∞
dx φ0(x)

√
ϕ′(P)

2π
e−iϕ(P)x , (40)

which is trivially integrated and results in

g0(P) �
(

2

π

)1/4 √
σϕ′(P) e−[σϕ(P)]2 �

(
2

π

)1/4 √
σ

1 + λ2P2 exp
{−σ 2[ϕ(P)]2} . (41)

As observed above, the momentum eigenfunctions are not complete. Therefore, we expect that the components g0 do not contain the
full information contained in φ0. In order to estimate the loss when decomposing the Gaussian wave function into its P-components
let us consider the quantity

∫ ∞

−∞
dP |g0(P)|2 �

√
2

π
σ

∫ ∞

−∞
dP ϕ′(P)e−2σ 2ϕ2(P)

� 2√
π

∫ πσ√
2λ

0
dt e−t2 � erfc

(
πσ√

2λ

)
.

(42)
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where erfc denotes the complementary error function. If we assume that the width of our Gaussian is sufficiently large,1 i.e. σ 
 λ,
the asymptotic relation

erfc (z) � e−z2

z
√

π

(
1 + O(z−2)

)
(43)

indicates that the loss due to the momentum decomposition becomes exponentially small
∫ ∞

−∞
dP |g0(P)|2� 1 −

√
2

π3

λ

σ
e− π2σ2

2λ2 (1 + O(λ2)) . (44)

This implies that for a Gaussian with σ 
 λ, or more generally for sufficiently smooth wave functions, we may ignore the loss due
to the incompleteness of the momentum eigenfunctions as the error will be exponentially small.2 To confirm this, let us reconstruct
the Gaussian from its P-components by

φ̃0(x) :�
∫ ∞

−∞
dP g0(P) uP (x) � 1

(2π)1/4

√
σ

π

∫ ∞

−∞
dP ϕ′(P) eiϕ(P)xe−σ 2ϕ2(P)

� e−x2/4σ 2

(2πσ 2)1/4

σ√
π

∫ π/2λ

−π/2λ

dϕ exp

{
−σ 2

(
ϕ + i

x

2σ 2

)2
}

� φ0(x) − 1

(2πσ 2)1/4

2√
π

∫ ∞
πσ
2λ

dt e−t2 cos(xt/σ ) .

(45)

The last integral can be estimated as follows∣∣∣∣∣
2√
π

∫ ∞
πσ
2λ

dt e−t2 cos(xt/σ )

∣∣∣∣∣ ≤ 2√
π

∫ ∞
πσ
2λ

dt e−t2 |cos(xt/σ )| ≤ erfc
(πσ

2λ

)
. (46)

Again the result is an exponentially small correction to the original Gaussian under our assumption σ 
 λ. Hence, as we are only
interested in corrections being of O(λ2), we may ignore those exponentially small errors.

GUP Fourier transformation: Based on above discussion, we propose an approximate Fourier transformation for smooth wave
functions φ as follows

g(P) � F(φ(x)) :�
∫ ∞

−∞
dx φ(x)u∗

P (x) �
∫ ∞

−∞
dx φ(x)

√
ϕ′(P)

2π
e−iϕ(P)x (47)

with inverse transformation given by

φ̃(x) � F−1(g(p)) :�
∫ ∞

−∞
dP g(P)uP (x) �

∫ ∞

−∞
dP g(P)

√
ϕ′(P)

2π
eiϕ(P)x . (48)

Here for a smooth function φ, which varies on large scales in the sense

〈x2〉φ − 〈x〉2
φ 
 β (49)

we expect

φ̃(x) � φ(x) + O(e−1/β ) . (50)

In going forward, we will identify both function, i.e. φ̃(x) � φ(x). We will call the approximate Fourier transformation with φ̃(x)
replaced by φ(x) the GUP Fourier transformation. In that view, expectation values of any function say A(P) are then approximately
given by

〈A〉g0 :�
∫ ∞

−∞
dP A(P)|g0(P)|2 . (51)

Due to the symmetry of our Gaussian momentum distribution g0(P), the expectation value of P as well as ϕ(P) vanishes,

〈P〉g0 � 0 , 〈ϕ(P)〉g0 � 0 , (52)

but their variances �P �
√

〈P2〉g0 and �ϕ �
√

〈ϕ2〉g0 are nonzero. In fact, we explicitly have

�ϕ � 1

2σ
(53)

1 Physically this means that we are NOT exploring regions close to the Planck length. So this formalism allows us to describe“semiclassical”states in respect
to full quantum gravity. In other words, with the GUP we are closer to quantum gravity than with ordinary QFT, but not yet so close.
2 Recall that p0 � π

2λ
represents the cutoff of the canonical momentum as discussed in section 2. Hence this cutoff needs to obey p0 
 π

2σ
.
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resulting in the uncertainty relation

�x�ϕ � 1

2
. (54)

However, the integral to calculate 〈P2〉g0 cannot be evaluated in closed form. Here we recall the relation (10), which can be used to
express P in terms of ϕ. Namely, we have

P � 1

λ
tan(λϕ) , (55)

which may be expressed in terms of a power series in ϕ utilising the relation (21),

P � ϕ

∞∑
n�0

22n+2(22n+2 − 1)

(2n + 2)!
B2n (−1)nβnϕ2n . (56)

Hence 〈P2〉g0 can be expressed as a sum of higher-order Gaussian moments 〈ϕ2m〉g0 � (2m−1)!!
(2σ )2m . To first order in β, we have

P � ϕ + β
3 ϕ3 + O(β2) resulting in

〈P2〉g0 � 〈ϕ2〉g0 +
2

3
β〈ϕ4〉g0 + O(β2) � 1

4σ 2 +
β

8σ 4 + O(β2) . (57)

This implies the uncertainty relation

�P�x � 1

2

(
1 +

β

4(�x)2 + O(β2)

)
� 1

2

(
1 + β�P2 + O(β2)

)
, (58)

indicating that a Gaussian wave packet is to first order in β a minimal uncertainty state according to (3).

5 Time evolution of a Gaussian wave function

Now let us consider the time evolution of the free Gaussian wave packet. This is most suitable done via the Fourier transform, which
in the absence of any external potential evolves in time according to

gt (P) � e− iP2 t
2M g0(P) . (59)

Obviously, |gt (P)|2� |g0(P)|2 and hence
〈
P2

〉
gt

� 〈
P2

〉
g0

. That is, it is given by the initial expectation value (57).
By applying the inverse Fourier transformation, we obtain the wave function at time t > 0 as follows

φt (x) �
∫ ∞

−∞
dP gt (P)uP (x)

�
(

σ 2

2π3

)1/4 ∫ ∞

−∞
dP ϕ′(P) exp

{
−σ 2ϕ2(P) + iϕ(P)x − iP2t

2M

}
.

(60)

In general, this integral may not be evaluated in closed form. However, using the power series for P � 1
λ

tan(λϕ) � ϕ+ 1
3λ2ϕ3+O(λ4)

we may arrive at a power series in λ2 with coefficients given by the moments of the Gaussian ϕ-distribution. Considering terms up
to first order in λ2, we have

e−i P2
2M t � e−iσ 2ϕ2 t

τ

(
1 − i

3
ϕ4σ 4 λ2

σ 2

t

τ
+ O

(
λ4

σ 4

t2

τ 2

))
, (61)

where we introduced the time scale τ :� 2Mσ 2. Now above integral (60) is reduced to the evaluation of even momenta of the form

〈ϕ2m〉gt :�
√

2σ 2

π

∫ p0

−p0

dϕ ϕ2me−2σ 2ϕ2 � (2m − 1)! !

22mσ 2m + e− π2σ2

2λ2 O

(
σ 2m−1

λ2m−1

)
. (62)

Again we have utilised the asymptotic form (43) of the complementary error function in the last step. The result reads

φt (x) � φ0
t (x)

[
1 − i

λ2

σ 2

t

τ

(
1

12

σ 8

σ 8
t

x4

σ 4 − σ 6

σ 6
t

x2

σ 2 +
σ 4

σ 4
t

)]
+ O

(
t2

τ 2

λ4

σ 4

)
, (63)

where φ0
t (x) denotes the standard undeformed (i.e. λ � 0) Gaussian wave function evolving in time. In addition, we have introduced

the time-dependent width

σ 2
t :� σ 2 +

it

2M
� σ 2

(
1 + i

t

τ

)
, (64)
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characterising the complex width of the time-dependent undeformed Gaussian wave packet.

Let us consider a short time interval where t � τ and consider the width to first order in time, σ
σt

� 1 − i t
2τ

+ O( t
2

τ 2 ). Then we
observe

|φt (x)|2� |φ0
t (x)|2

[
1 − 2

λ2

σ 2

t2

τ 2

(
2

3

x4

σ 4 − 6
x2

σ 2 + 4

)
+ O

(
t3

τ 3

λ2

σ 2

)
+ O

(
t2

τ 2

λ4

σ 4

)]
(65)

and conclude with the well-known results 〈x2〉φ0
t

� σ 2(1 + t2

τ 2 ) and 〈x4〉φ0
t

� 3σ 4(1 + t2

τ 2 )2 that φt (x) is up to the order indicated in
(65) already well normalised. Therefore, we can calculate

〈x2〉�t �
∫ ∞

−∞
dx x2|�t (x)|2� σ 2

(
1 +

t2

τ 2 + 8
λ2

σ 2

t2

τ 2 + O

(
t3

τ 3

λ2

σ 2

)
+ O

(
t2

τ 2

λ4

σ 4

))
(66)

and conclude the time-dependent uncertainty relation

(�x)2
φt

(�P)2
φt

� 1

4

[
1 +

t2

τ 2 +
λ2

σ 2 +
17

2

λ2

σ 2

t2

τ 2 + O

(
t3

τ 3

λ2

σ 2

)
+ O

(
t2

τ 2

λ4

σ 4

)]
, (67)

which coincides for t � 0 with the result (58).

6 Examples

In this section, we will discuss a few special cases of a GUP particle interacting with an external scalar potential V (x). These are
the one-dimensional box and an attractive potential well with finite depth.

The one-dimensional box problem:
Here the potential considered represents a box of linear extension L with infinite walls at its boundaries,

V (x) :�
{

0 0 < x < L
∞ elsewhere

. (68)

The corresponding stationary Schrödinger equation then reads

− D2
x

2M
ψ(x) � Eψ(x) , (69)

where we assume the Dirichlet boundary conditions ψ(0) � 0 � ψ(L). Setting E � κ2/2M with κ > 0, this may be rewritten in
the form

(
D2
x + κ2)ψ(x) � 0 , (70)

which is the wave equation discussed at the end of Sect. 3. Therefore, we may write the general solution in terms of the GUP sine
and cosine functions,

ψ(x) � c1Cβ (κ; x) + c2Sβ (κ; x) . (71)

The boundary condition at x � 0 requires c1 � 0 and c2 �
√

2
L results in a proper normalisation. The boundary condition at x � L

then requires sin(ϕ(κ)L) � 0, which provides us with the quantisation condition for κ ,

Lϕ(κ) � nπ . (72)

Here we recall that ϕ is the principle branch of the arctan and hence |ϕ(κ)|< π
2λ

. This results in a finite number of bound states.

κn � 1

λ
tan

(
λ

L
nπ

)
, n � 1, 2, 3, . . . , nmax <

L

2λ
. (73)

The corresponding wave functions read

ψn(x) �
√

2

L
sin

nπ

L
x (74)

and are identical in form to the solutions of the same problem in standard quantum mechanics when λ � 0. The difference is visible
only in the spectrum given by the eigenvalues

En � 1

2Mλ2 tan2
(

λ

L
nπ

)
, n � 1, 2, 3, . . . , nmax <

L

2λ
. (75)
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That is, for a width L < 2λ there are no solutions and for any finite L we have a finite number of bound states. Note that for n → L
2λ

we have En → ∞, which in essence tells us that we need an infinite amount of energy to squeeze a GUP particle into a box of the
size of 2λ or less.

The expectation values of position and momentum as well as their square expectation values for an eigenstate ψn are given by

〈x〉 � L

2
, 〈P〉 � 0 , 〈x2〉 � L2

(
1

3
− 1

2n2π2

)
, 〈P2〉 � 1

λ2 tan2
(

λ

L
nπ

)
. (76)

Thus, the uncertainty relation in state ψn reads

�x�P � L

λ
tan

(
λ

L
nπ

)√
1

12
− 1

2(nπ)2 . (77)

Finally let us mention that above solution for a small β agrees with the findings of ref. [20, 21], which both use the approximated
derivative (16). However, due to this approximated GUP derivative the first paper misses the essential point that the number of
eigenvalues is finite as indicated in (75). In [21] a semiclassical analysis resulted in an estimate of the number of bound states given
by nmax < 2L

3λ
which is slightly higher then our exact result (75).

The attractive potential well: Now we consider a one-dimension potential well with a finite depth characterised by a parameter
V0 < 0 and a width given by 2a > 0. The potential thus reads

V (x) :�
{

0 |x |> a
V0 |x |< a

, a > 0 , V0 < 0 , (78)

and the time independent Schrödinger equation becomes

− 1

2M
D2
xφ(x) � (E − V (x))φ(x) . (79)

Here we only consider bound states, i.e. V0 < E < 0, and introduce the two quantities κ > 0 and q > 0 given by

E � − κ2

2M
< 0 , E − V0 � q2

2M
> 0 . (80)

As the potential is symmetric in x, the corresponding eigenfunctions are either symmetric or anti-symmetric, φ±(−x) � ±φ±(x).
They are then given by

φ+(x) �
{
Aeiϕ(iκ) |x | |x |> a
B cos(ϕ(q)x) |x |< a

(81)

and

φ−(x) �
{
A x

|x |e
iϕ(iκ) |x | |x |> a

C sin(ϕ(q)x) |x |< a
, (82)

respectively. The continuity of φ and Dxφ at x � a then brings us to the two conditions

κ � q tan(ϕ(q)a) and κ � −q cot(ϕ(q)a) (83)

for the even and odd solutions, respectively. Both conditions are not explicitly solvable. Let us introduce the dimensionless quantity
γ :� a

√
q2 + κ2 � √

2Ma2|V0|, which in essence is a measure for the strength of the potential. Then with y :� aq above conditions
become √

γ 2 − y2

y
�

{
tan

( a
λ

arctan( λ
a y)

)
for φ+

− cot
( a

λ
arctan( λ

a y)
)

for φ−
. (84)

It appears that there always exists a ground state. No excited states occur when γ < a
λ

tan( λ
aπ). In Figs. 1 and 2 we present

graphical solutions for both conditions (84) for fixed value γ � 10 and a/λ � 1, 5, 10, 20, respectively. Figure 1 shows the even
solutions related to the first condition in (84). The black line presents the left-hand side of this condition, whereas the blue lines show
the right-hand side of (84). In addition, we added red lines indicating the undeformed case, see the leading term below in eq. (85).
The parameter a/λ varies from a/λ � 1 in the left upper graph to a/λ � 20 in the right lower one. Figure 2 shows the same graphs
but for the odd solutions in (84). Both figures clearly show that with increasing width the GUP potential well accumulates more
and more bound states, indicated by the intersections of the black and blue lines. For increasing a the difference to the undeformed
potential well becomes less invisible, in particular for the lower eigenvalues. For a � 20λ the ground state energy is essential
identical to that of the undeformed case as the red curve completely disappeared underneath the blue one.

For a 
 λ one obtains the approximate conditions
√

γ 2 − y2

y
�

{
tan y − 1

3
λ2

a2 y
3
(
1 + tan2 y

)
+ O( λ4

a4 ) for φ+

− cot y − 1
3

λ2

a2 y
3
(
1 + cot2 y

)
+ O( λ4

a4 ) for φ−
. (85)
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Fig. 1 The graphical presentation of the even solutions of (84) for fixed γ � 10 and a/λ varying from 1, 5, 10, 20 from left upper corner till right lower
one. The intersections of the black line with blue lines indicate the even solutions to the eigenvalue problem. The red lines indicate the undeformed case
with λ � 0

Clearly λ � 0 reproduces the standard textbook result indicated by the red curves in both figures.
For the special case a � λ the above conditions (83) allow for an analytic solution as they are reduced to

κ � λq2 and κ � − 1

λ
. (86)

As κ > 0, we have to discard the second solution belonging to an odd eigenstate and we remain with a single bound state with
energy eigenvalue given by

E1 � V0 +
1

4Mλ2

(√
1 − 8V0Mλ2 − 1

)
. (87)

Here we observe that for a � λ → 0 this approaches the value E1 → 0 and the ground state disappears.
To conclude this discussion on the square well, let us look at the limit of small a and large V0 such that the product α :� a|V0|

remains constant. That is, in the limit a → 0 the box simulates a δ-potential. For small a relation (80) results in a large q approximately
given by q2 ≈ 2Mα

a . For large q a little exercise shows that tan(ϕ(q)a) ≈ π
2
a
λ

. Hence, via eq. (83) we arrive at the ground state
energy

E1 ≈ −aαπ2

4λ2 .

That is, in the limit a → 0, which simulates a potential V (x) → 2αδ(x), the ground state disappears again. In other words, the
Dirac δ-potential does not have a bound state in gravitational quantum mechanics.

7 Summary

In this paper, we have presented an algebraic approach to gravitational quantum mechanics being based on a deformed Heisenberg
algebra resulting in a generalised uncertainty principle. The GUP introduces a minimal length λ being directly related to the
deformation parameter β � λ2 and has severe effects on the associated quantum models. For the investigation of such deformed
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Fig. 2 Same as figure 1 but for the odd solutions of (84) with same set of parameters. The case a � λ in the left upper graph does not exhibit an odd eigenstate
as discussed in the text

quantum mechanical models, we studied some properties of the GUP derivative introduced in section 3. Our findings are essential
ingredients to obtain exact solutions for several models in gravitational quantum mechanics.

The plane wave solutions were shown to be characterised by the so-called GUP exponential function which allowed a superposition
to form a Gaussian wave packet. It appears that details of such wave packets are lost when decomposing them into their plane wave
components. However, such details are shown to be exponentially small and hence, can be ignored when looking into effects being
of the order of β. This has let us to introduce the GUP Fourier transformation, which is an approximation of the standard Fourier
transformation. This enabled us to look into the time evolution of a Gaussian wave packet, which was analysed to first order in
β � λ2. The corresponding uncertainty relation has been present explicitly to second order in time.

We further investigated several models where the GUP particle interacts with an external potential, for which we could solve
exactly the corresponding eigenvalue problem with the help of the GUP exponential. For the particle enclosed in a box it turned
out that the corresponding energy eigenfunctions are identical in form with those of the undeformed case. The effect of a minimal
length only shows up in the corresponding spectrum which consists of a finite number of eigenvalues only. This is clearly due to the
effect of a minimal length as for a box of size L < 2λ no energy eigenstates exist at all as they would require an infinite amount of
energy.

The situation is different when considering a potential well with a finite depth −V0 and a width of size 2a. Here again only a
finite number of bound states exits but for any a > 0 there at least is one bound state. For large a 
 λ the low-lying eigenvalues
are very close to those of the undeformed case. For the special case a � λ only one bound state exists whose eigenvalue could be
given in closed form. The particular case where a → 0 and V0 → −∞ such that a|V0| remains constant the well simulates a Dirac
delta potential but does not exhibit any bound state in that limit.
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Appendix: Approximate completeness of GUP momentum eigenfunctions

Let us reconsider the relation (37) which reads
∫ ∞

−∞
dP u∗

P (x)uP (x ′) �
∫ ∞

−∞
dP

eiϕ(P)(x−x ′)

2π(1 + βP2)
(88)

Noting that ϕ(P) � P − (β/3)P3 + O(β2) we realise that the P3-term in the exponent contributes only with a leading order in β2 to
(88) due to its anti-symmetry. Hence the leading term in β comes from the measure (1 + βP2)−1 � 1 − βP2 + O(β2). This brings
us to the approximate completeness relation∫ ∞

−∞
dP u∗

P (x)uP (x ′) � 1

2π

∫ ∞

−∞
dP eiP(x−x ′)(1 − βP2 + O(β2)

)

� δ(x − x ′) + βδ′′(x − x ′) + O(β2).
(89)

That is, the first-order correction term in β is represented by a second-order derivative of the delta function.
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